Abstract

ABSTRACT Edge flames are a canonical two-dimensional flame structure appearing in lifted jet flames and in the growth and repair of flame holes in nonpremixed turbulent combustion. Computational studies of edge flames with hydrodynamic-coupling at high strains are difficult owing to difficulties defining a stationary state. A wedge-shaped counterflow configuration is here used to provide control over the position of the edge flame, and allowing access to stationary, hydrodynamically-coupled retreating flames (at low and high strains). ethylene–air edge flames are established in the resulting non-uniformly strained counterflow, with combustion modeled using a skeletal reduction of the USC Mech II. The details of the ethylene–air edge flame are discussed, and comparisons are made between stoichiometric, fuel-lean, and fuel-rich compositions. Mixture-fraction-based coordinates local to the flame front are developed and analysed for a range of edge-flame speeds and compositions. A strain-rate parameter is described that admits a speed-strain relationship that is insensitive to the mixture stoichiometry, and a model for retreating flame speeds at high strain rates is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.