Abstract

Abstract A set of atmospheric general circulation model (AGCM) experiments under idealized conditions is performed to investigate atmospheric response to surface boundary forcing by extratropical land–sea contrast, large-scale orography, and tropical sea surface temperature (SST) distribution. Stationary eddies forced by the extratropical land–sea distribution are strongest in high latitudes, but their amplitudes are modest and comparable to internal chaotic variability. By contrast, the stationary eddy response to zonal variations in tropical SST is strong and robust in both the subtropics and midlatitudes. While these SST-forced stationary waves are trapped within the troposphere, those induced by orography show a strong vertical propagation into the stratosphere. Analysis of transient eddies indicates that orography is effective in generating a zonally localized storm track while extratropical land–sea contrast has little effect on the zonal variation of upper-level storm activity. A vorticity budget a...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.