Abstract
We investigate a broad family of non weakly reversible stochastically modeled reaction networks (CRN), by looking at their steady-state distributions. Most known results on stationary distributions assume weak reversibility and zero deficiency. We first give explicitly product-form steady-state distributions for a class of non weakly reversible autocatalytic CRN of arbitrary deficiency. Examples of interest in statistical mechanics (inclusion process), life sciences and robotics (collective decision making in ant and robot swarms) are provided. The product-form nature of the steady-state then enables the study of condensation in particle systems that are generalizations of the inclusion process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.