Abstract

Forward flux sampling (FFS) has provided a convenient and efficient way to simulate rare events in equilibrium as well as non-equilibrium stochastic systems. In the present paper, the FFS scheme is applied to systems driven by colored Gaussian noise through enlarging the dimension to deal with the non-Markovian property. Besides, the parameters of the FFS scheme have to be reconsidered. Interestingly, by analyzing the effect of colored Gaussian noise on stationary distributions, some results are found which are clearly different from the case of Gaussian white noise excitation. We mainly found that the probability of the occurrence of rare events is inversely proportional to the correlation time. Comparing to the case of Gaussian white noise with the same intensity, the presence of colored Gaussian noise exerts a hindrance to the occurrence of rare events. Meanwhile, the FFS results show a good agreement with those from Monte Carlo simulations, even for the colored Gaussian noise case. This provides a potential insight into rare events of systems under non-white Gaussian noise via the FFS scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.