Abstract

Telomeres are nucleotide caps located at the ends of each eukaryotic chromosome. Under normal physiological conditions as well as in culture, they shorten during each DNA replication round. Short telomeres initiate a proliferative arrest of cells termed 'replicative senescence'. However, cancer cells possessing limitless replication potential can avoid senescence by the telomere maintenance mechanism, which offsets telomeric loss. Therefore, cancer cells have sufficiently long telomeres even though their lengths are significantly shorter than their normal counterparts. This implies that the attrition and elongation rates play crucial roles in deciding whether and when cells ultimately become carcinogenic. In this research, we propose a concise mathematical model that shows the shortest telomere length at each cell division and prove mathematical conditions related to the attrition and elongation rates, which are necessary and sufficient for the existence of stationary distribution of telomere lengths. Moreover, we estimate the parameters of the telomere length maintenance process based on frequentist and Bayesian approaches. This study expands our knowledge of the mathematical relationship between the telomere attrition and elongation rates in cancer cells, which is important because the telomere length dynamics is a useful biomarker of cancer diagnosis and prognosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.