Abstract
Self-organization, where spontaneous orderings occur under driven conditions, is one of the hallmarks of biological systems. We consider a statistical mechanical treatment of the biased distribution of such organized states, which become favored as a result of their catalytic activity under chemical driving forces. A generalization of the equilibrium canonical distribution describes the stationary state, which can be used to model shifts in conformational ensembles sampled by an enzyme in working conditions. The basic idea is applied to the process of biological information generation from random sequences of heteropolymers, where unfavorable Shannon entropy is overcome by the catalytic activities of selected genes. The ordering process is demonstrated with the genetic distance to a genotype with high catalytic activity as an order parameter. The resulting free energy can have multiple minima, corresponding to disordered and organized phases with first-order transitions between them.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.