Abstract
In this paper, a stochastic HIV model with CD4+ T-cell proliferation, cell-free infection and cell-to-cell transmission is proposed. By constructing suitable Lyapunov function, we establish the existence of unique and ergodic stationary distribution of the model. Moreover, by using asymptotic analysis and employing the Fokker-Planck equation, we derive the probability density function around the quasi-steady state of the system. Through numerical simulations, the effects of the stochastic perturbation and cell-to-cell infection on model dynamic behavior are investigated, thus the probability density function of the system is also given under the realistic parameter values.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.