Abstract
In this paper, we study the dynamical behavior of a stochastic food chain chemostat model, in which the white noise is proportional to the variables. Firstly, we prove the existence and uniqueness of the global positive solution. Then by constructing suitable Lyapunov functions, we show the system has a unique ergodic stationary distribution. Furthermore, the extinction of microorganisms is discussed in two cases. In one case, both the prey and the predator species are extinct, and in the other case, the prey species is surviving and the predator species is extinct. Finally, numerical experiments are performed for supporting the theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.