Abstract
Numerical simulations are used to study laminar breakdown characteristics associated with stationary crossflow instability in the boundary-layer flow over a subsonic swept-wing configuration. Previous work involving the linear and nonlinear development of individual, fundamental modes of secondary instability waves is extended by considering the role of more complex, yet controlled, spectra of the secondary instability modes. Direct numerical simulations target a mixed mode transition scenario involving the simultaneous presence of Y and Z modes of secondary instability. For the initial amplitudes investigated in this paper, the Y modes are found to play an insignificant role during the onset of transition, in spite of achieving rather large, O(5%), amplitudes of RMS velocity fluctuation prior to transition. Analysis of the numerical simulations shows that this rather surprising finding can be attributed to the fact that the Y modes are concentrated near the top of the crossflow vortex and exert relatively small influence on the Z modes that reside closer to the surface and can lead to transition via nonlinear spreading that does not involve interactions with the Y mode. Finally, secondary instability calculations reveal that subharmonic modes of secondary instability have substantially lower growth rates than those of the fundamental modes, and hence, are less likely to play an important role during the breakdown process involving complex initial spectra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.