Abstract

The motion of point vortices in a plane of fluid is an old problem of fluid mechanics, which was given a Hamiltonian formulation by Kirchhoff. Stationary configurations are those which remain self-similar throughout the motion. Results of two types are presented. Configurations which are in equilibrium or which translate uniformly are counted using methods of algebraic geometry, which establish necessary and sufficient conditions for existence. Relative equilibria (rigidly rotating configurations) which lie on a line are studied using a topological construction applicable to other power-law systems. Upper and lower bounds for such configurations are found for vortices with mixed circulations. Arrangements of three vortices which collide in finite time are well known. One-dimensional families of such configurations are shown to exist for more than three vortices. Stationary configurations of four vortices are examined in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.