Abstract

Stationary, axially symmetric Brans-Dicke-Maxwell solutions are reexamined in the framework of the Brans-Dicke (BD) theory. We see that, employing a particular parametrization of the standard axially symmetric metric simplifies the procedure of obtaining the Ernst equations for axially symmetric electrovacuum space-times for this theory. This analysis also permits us to construct a two parameter extension in both Jordan and Einstein frames of an old solution generating technique frequently used to construct axially symmetric solutions for BD theory from a seed solution of general relativity. As applications of this technique, several known and new solutions are constructed including a general axially symmetric BD-Maxwell solution of Plebanski-Demianski with vanishing cosmological constant, i.e. the Kinnersley solution and general magnetized Kerr-Newman--type solutions. Some physical properties and the circular motion of test particles for a particular subclass of Kinnersley solution, i.e., a Kerr-Newman-NUT--type solution for BD theory, are also investigated in some detail.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.