Abstract

One-dimensional axial models of the plasma discharge of a Hall thruster provide a valuable picture of its physical behavior with a small computational effort. Therefore, they are very suitable for quick parametric analyses or as a support tool for analyzing the impact of modeling decisions. This paper extends a well-known drift-diffusion stationary, quasineutral model by adding electron azimuthal inertia (EAI), a nonzero thickness cathode layer, and the far-plume region where electrons demagnetize and cool down. The EAI dominates on the far plume and affects positively to thrust. For a small ion backstreaming current, EAI modifies much the electron velocities and density near the anode, but has no discernible effect on the electron cross-field transport. Electron axial inertia and azimuthal gyrovisosity are estimated. The thick cathode layer connects quasineutrally the near and far plumes but the coupling between these two regions is weak. The far plume region is sensitive to the decay length of the magnetic field, the downstream boundary conditions on the electron currents, and the stray electric currents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.