Abstract

We consider a reparable system with a finite state space, evolving in time according to a semi-Markov process. The system is stopped for it to be preventively maintained at random times for a random duration. Our aim is to find the preventive maintenance policy that optimizes the stationary availability, whenever it exists. The computation of the stationary availability is based on the fact that the above maintained system evolves according to a semi-regenerative process. As for the optimization, we observe on numerical examples that it is possible to limit the study to the maintenance actions that begin at deterministic times. We demonstrate this result in a particular case and we study the deterministic maintenance policies in that case. In particular, we show that, if the initial system has an increasing failure rate, the maintenance actions improve the stationary availability if and only if they are not too long on the average, compared to the repairs ( a bound for the mean duration of the maintenance actions is provided). On the contrary, if the initial system has a decreasing failure rate, the maintenance policy lowers the stationary availability. A few other cases are studied. Copyright © 2000 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.