Abstract

We investigate the matter-wave solitons in a spin–orbit-coupled spin-1 Bose–Einstein condensate using a multiscale perturbation method. Beginning with the one-dimensional spin–orbit-coupled threecomponent Gross–Pitaevskii equations, we derive a single nonlinear Schrodinger equation, which allows determination of the analytical soliton solutions of the system. Stationary and moving solitons in the system are derived. In particular, a parameter space for different existing soliton types is provided. It is shown that there exist only dark or bright solitons when the spin–orbit coupling is weak, with the solitons depending on the atomic interactions. However, when the spin–orbit coupling is strong, both dark and bright solitons exist, being determined by the Raman coupling. Our analytical solutions are confirmed by direct numerical simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call