Abstract
This paper presents the characterization of the covariance matrix function of a Gaussian or second-order elliptically contoured vector random field on the sphere which is stationary, isotropic, and mean square continuous. This characterization involves an infinite sum of the products of positive definite matrices and Gegenbauer’s polynomials, and may not be available for other non-Gaussian vector random fields on spheres such as a χ2 or log-Gaussian vector random field. We also offer two simple but efficient constructing approaches, and derive some parametric covariance matrix structures on spheres.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.