Abstract

In this paper we exhibit a family of stationary solutions of the Mumford–Shah functional in R3, arbitrary close to a crack-front. Unlike other examples, known in the literature, those are topologically non-minimizing in the sense of Bonnet [4]. We also give a local version in a finite cylinder and prove an energy estimate for minimizers. Numerical illustrations indicate the stationary solutions are unlikely minimizers and show how the dependence on axial variable impacts the geometry of the discontinuity set. A self-contained proof of the stationarity of the cracktip function for the Mumford–Shah problem in 2D is presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.