Abstract
Pathological hypoxia plays an important role in many diseases, such as atherosclerosis, cancer, and rheumatoid arthritis. The aim of the present study was to examine the effects of different statins on hypoxia-induced endothelial cell signalling. Human umbilical cord vein endothelial cells (HUVEC) were treated with NaCN (CN, 2.5 mmol/l) to simulate a transient hypoxia. The CN-induced increase of endothelial cell numbers was significantly ( n = 10, p < 0.01) reduced by the Ca 2+ chelator BAPTA (10 μmol/l), or the reactive oxygen species (ROS) scavenger N-acetylcysteine (ACC, 1 mmol/l), or the NAD(P)H-oxidase inhibitor diphenyleneiodonium (DPI, 5 μmol/l). In detail, cell numbers were (in percentage of control): 163.24 (CN), 90.06 (CN + ACC), 92.06 (CN + DPI). Intracellular-Ca 2+ and -ROS, analysed by fluorescence imaging, were significantly increased by CN. Interestingly, the CN-induced increase of ROS was in part Ca 2+-dependent, whereas the Ca 2+ increase was not ROS-dependent. Simvastatin (5 μmol/l), fluvastatin (2.5 μmol/l), and cerivastatin (0.1 μmol/l) all reduced CN-induced proliferation, ROS generation and Ca 2+ increase. Cell viability was not reduced by the statins and the antiproliferative effect was completely reversed by mevalonate (500 μmol/l). In conclusion our study demonstrates that statins block hypoxia-associated endothelial proliferation by preventing the increase of Ca 2+ and ROS.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.