Abstract

Driven by antiferromagnetic quantum fluctuations on a deformable lattice, spin-Peierls systems dimerize magnetically and structurally at low temperatures. In this dimer phase all excitations with non-zero magnetization have a finite energy. The energy gain by a finite induced magnetization overcomes the energy gap at a critical magnetic field strength H c. Above H c, an incommensurately modulated magnetic and distortive domain wall pattern is formed. The magnetic modulation pattern and the low-energy excitation spectrum in this high-field phase of the inorganic spin-Peierls compound CuGeO 3 are fully determined by elastic and inelastic neutron scattering and discussed together with theoretical predictions as well as other experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.