Abstract
Free and forced vibrations of moderately thick, transversely isotropic plates loaded by lateral forces and hydrostatic (isotropic) in-plane forces are analyzed in the frequency domain. Influences of shear, rotatory inertia, transverse normal stress and of a two-parameter Pasternak foundation are taken into account. First-order shear-deformation theories of the Reissner–Mindlin type are considered. These theories are written in a unifying manner using tracers to account for the various influencing parameters. In the case of a general polygonal shape of the plate and hard-hinged support conditions, the Reissner-Mindlin deflections are shown to coincide with the results of the classical Kirchhoff theory of thin plates. The background Kirchhoff plate, which has effective (frequency-dependent) stiffness and mass, is loaded by effective lateral and in-plane forces and by imposed fictitious “thermal” curvatures. These deflections are further split into deflections of linear elastic prestressed membranes with effective stiffness, mass and load. This analogy for the deflections is confirmed by utilizing D'Alembert's dynamic principle in the formulation of Lagrange, which yields an integral equation. Furthermore, the analogy is extended in order to include shear forces and bending moments. It is shown that in the static case, with no in-plane prestress taken into account, the stress resultants for certain groups of Reissner-type shear-deformable plates are identical with those resulting from the Kirchhoff theory of the background. Finally, results taken from the literature for simply supported rectangular and polygonal Mindlin plates are yielded and verified by analogy in a quick and simple manner.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.