Abstract

We propose a new coarse-grained model for the description of liquid-vapor phase separation of colloid-polymer mixtures. The hard-sphere repulsion between colloids, and between colloids and polymers, which is used in the well-known Asakura-Oosawa (AO) model, is replaced with Weeks-Chandler-Andersen potentials. Similarly, a soft potential of height comparable to thermal energy is used for the polymer-polymer interaction, rather than treating polymers as ideal gas particles. It is shown by grand-canonical Monte Carlo simulations that this model leads to a coexistence curve that almost coincides with that of the AO model and that the Ising critical behavior of static quantities is reproduced. Then the main advantage of the model is exploited-its suitability for Molecular Dynamics simulations-to study the dynamics of mean square displacements of the particles, transport coefficients such as the self-diffusion and interdiffusion coefficients, and dynamic structure factors. While the self-diffusion of polymers increases slightly when the critical point is approached, the self-diffusion of colloids decreases and at criticality the colloid self-diffusion coefficient is about a factor of 10 smaller than that of the polymers. Critical slowing down of interdiffusion is observed, which is qualitatively similar to symmetric binary Lennard-Jones mixtures, for which no dynamic asymmetry of self-diffusion coefficients occurs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.