Abstract

We show that the problem of computing sharp upper and lower static-arbitrage bounds on the price of a European basket option, given the prices of other similar options, can be cast as a linear program (LP). The LP formulations readily yield super-replicating (subreplicating) strategies for the upper (lower) bound problem. The dual counterparts of the LP formulations in turn yield underlying asset price distributions that replicate the given option prices, and the bound on the new basket option’s price. In the special case when the given option prices are those of vanilla options on the underlying assets, we show that the LP formulations admit further simplifications. In particular, for the upper bound problem we derive closed-form formulas for the basket’s price bound, and for the corresponding superreplicating strategy. In addition, our LP approach admits efficient modeling of additional features such as basket options with negative weights, bid/ask spreads, transaction costs, and diversification constraints. We provide numerical experiments to illustrate some of our results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.