Abstract
A statically non-wetting, electrospun surface of non volatile room temperature ionic liquid (RTIL), 1-butyl-3-methylimidazolium hexafluorophosphate, (BMIM-PF6), hosted in a solution-processable, semi-fluorinated perfluorocyclobutyl (BP-PFCB) aryl ether polymer was successfully prepared by electrospinning and compared with a surface prepared by spin casting. The surface properties of undoped and BMIM-PF6 doped systems were analyzed by water contact angle (WCA) and atomic force microscopy (AFM). BMIM-PF6 doped BP-PFCB surfaces prepared by spin casting showed a WCA of 90° while non-woven electrospun surfaces with the same BMIM-PF6 concentration showed high degree of hydrophobicity with a WCA greater than 150°. Morphologies of the electrospun surfaces were characterized by scanning electron microscopy (SEM). The surface composition was analyzed by energy-dispersive X-ray spectroscopy (EDXS) and attenuated total reflectance infrared spectroscopy (ATR-IR). Thermal analysis of the electrospun, non-woven surfaces of the doped and the undoped system of BP-PFCB were done by TGA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.