Abstract

A static wormhole solution for gravity in vacuum is found for odd dimensions greater than four. In five dimensions the gravitational theory considered is described by the Einstein-Gauss-Bonnet action where the coupling of the quadratic term is fixed in terms of the cosmological constant. In higher dimensions $d=2n+1$, the theory corresponds to a particular case of the Lovelock action containing higher powers of the curvature, so that in general, it can be written as a Chern-Simons form for the AdS group. The wormhole connects two asymptotically locally AdS spacetimes each with a geometry at the boundary locally given by $\mathbb{R}\ifmmode\times\else\texttimes\fi{}{S}^{1}\ifmmode\times\else\texttimes\fi{}{H}_{d\ensuremath{-}3}$. Gravity pulls towards a fixed hypersurface located at some arbitrary proper distance parallel to the neck. The causal structure shows that both asymptotic regions are connected by light signals in a finite time. The Euclidean continuation of the wormhole is smooth independently of the Euclidean time period, and it can be seen as instanton with vanishing Euclidean action. The mass can also be obtained from a surface integral and it is shown to vanish.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.