Abstract

The increase in demand and generator reaching reactive power limits may operate the power system in stressed conditions leading to voltage instability. Thus, the voltage stability assessment is essential for estimating the loadability margin of the power system. The grid operators urgently need a voltage stability assessment (VSA) method with high accuracy, fast response speed, and good scalability. The static VSA problem is defined as a regression problem. Moreover, an artificial neural network is constructed for online assessment of the regression problem. Firstly, the training sample set is obtained through scene simulation, power flow calculation, and local voltage stability index calculation; then, the class imbalance problem of the training samples is solved by the random under-sampling bagging (RUSBagging) method. Then, the mapping relationship between each feature and voltage stability is obtained by an artificial neural network. Finally, taking the modified IEEE39 node system as an example, by setting up four groups of methods for comparison, it is verified that the proposed method has a relatively ideal modeling speed and high accuracy, and can meet the requirements of power system voltage stability assessment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call