Abstract
Image denoising, a significant research area in the field of medical image processing, makes an effort to recover the original image from its noise corrupted image. The Pulse Coupled Neural Networks (PCNN) works well against denoising a noisy image. Generally, image denoising techniques are directly applied on the pixels. From the literature review, it is reported that denoising after frequency domain transformation is performing better since noise removal is applied over the coefficients. Motivated by this, in this paper, a new technique called the Static Thresholded Pulse Coupled Neural Network (ST-PCNN) is proposed by combining PCNN with traditional filtering or threshold shrinkage technique in Contourlet Transform domain. Four different existing PCNN architectures, such as Neuromime Structure, Intersecting Cortical Model, Unit-Linking Model and Multichannel Model are considered for comparative analysis. The filters such as Wiener, Median, Average, Gaussian and threshold shrinkage techniques such as Sure Shrink, HeurShrink, Neigh Shrink, BayesShrink are used. For noise removal, a mixture of Speckle and Gaussian noise is considered for a CT skull image. A mixture of Rician and Gaussian noise is considered for MRI brain image. A mixture of Speckle and Salt and Pepper noise is considered for a Mammogram image. The Performance Metrics such as Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), Image Quality Index (IQI), Universal Image Quality Index (UQI), Image Enhancement Filter (IEF), Structural Content (SC), Correlation Coefficient (CC), and Weighted Signal-to-Noise Ratio (WSNR) and Visual Signal-to-Noise Ratio (VSNR) are used to evaluate the performance of denoising.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.