Abstract

The proximity in time (∼7 years) and space (∼20 km) between the 1992 M=7.3 Landers earthquake and the 1999 M=7.1 Hector Mine event suggests a possible link between the quakes. We thus calculated the static stress changes following the 1992 Joshua Tree/Landers/Big Bear earthquake sequence on the 1999 M=7.1 Hector Mine rupture plane in southern California. Resolving the stress tensor into rake‐parallel and fault‐normal components and comparing with changes in the post‐Landers seismicity rate allows us to estimate a coefficient of friction on the Hector Mine plane. Seismicity following the 1992 sequence increased at Hector Mine where the fault was unclamped. This increase occurred despite a calculated reduction in right‐lateral shear stress. The dependence of seismicity change primarily on normal stress change implies a high coefficient of static friction (µ≥0.8). We calculated the Coulomb stress change using µ=0.8 and found that the Hector Mine hypocenter was mildly encouraged (0.5 bars) by the 1992 earthquake sequence. In addition, the region of peak slip during the Hector Mine quake occurred where Coulomb stress is calculated to have increased by 0.5–1.5 bars. In general, slip was more limited where Coulomb stress was reduced, though there was some slip where the strongest stress decrease was calculated. Interestingly, many smaller earthquakes nucleated at or near the 1999 Hector Mine hypocenter after 1992, but only in 1999 did an event spread to become a M=7.1 earthquake.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.