Abstract

Transformation of austenite to martensite during cold rolling operations is widely used to strengthen metastable austenitic stainless steel grades. Static strain aging (SSA) phenomena at low temperature, typically between 200°C and 400°C, can be used for additional increase in yield strength due to the presence of α’-martensite in the cold rolled metastable austenitic stainless steels. Indeed, SSA in austenitic stainless steel affects mainly in α’-martensite. The SSA response of three industrial stainless steel grades was investigated in order to understand the aspects of the aging phenomena at low temperature in metastable austenitic stainless steels. In this study, the optimization of, both, deformation and time-temperature parameters of the static aging treatment permitted an increase in yield strength up to 300 MPa while maintaining an acceptable total elongation in a commercial 301LN steel grade. Deformed metastable austenitic steels containing the “body-centered” α’-martensite are strengthened by the diffusion of interstitial solute atoms during aging at low temperature. Therefore, the carbon redistribution during aging at low temperature is explained in terms of the microstructural changes in austenite and martensite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call