Abstract

This paper develops a nonlocal strain gradient plate model for buckling analysis of graphene sheets under hygro-thermal environments with mass sensors. For a more accurate analysis of graphene sheets, the proposed theory contains two scale parameters related to the nonlocal and strain gradient effects. The graphene sheet is modeled via a two-variable shear deformation plate theory that does not need shear correction factors. Governing equations of a nonlocal strain gradient graphene sheet on the elastic substrate are derived via Hamilton’s principle. Galerkin’s method is implemented to solve the governing equations for different boundary conditions. Effects of different factors, such as moisture concentration rise, temperature rise, nonlocal parameter, length scale parameter, nanoparticle mass and geometrical parameters, on buckling characteristics of graphene sheets are examined and presented as dispersion graphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.