Abstract

In this paper, electromechanical buckling behavior of size-dependent flexoelectric nanoplates is investigated based on nonlocal and surface elasticity theories. Flexoelectricity represents the coupling between strain gradients and electrical polarizations. Flexoelectric nanoplates can tolerate higher buckling loads compared with conventional piezoelectric nanoplates, especially at lower thicknesses. The flexoelectric nanoplate is in contact with a two-parameter elastic foundation, which consists of infinite linear springs and a shear layer. Nonlocal elasticity theory of Eringen is applied in the analysis of flexoelectric nanoplates for the first time. The residual surface stresses which are usually neglected in the modeling of flexoelectric nanoplates are incorporated into nonlocal elasticity to provide better understanding of the physics of the problem. Applying an analytical solution which satisfies various boundary conditions, the governing equations obtained from Hamilton’s principle are solved. The reliability of the present approach is verified by comparing the obtained results with those provided in literature. Finally, the influences of nonlocal parameter, surface effect, plate geometrical parameters, elastic foundation and boundary conditions on the buckling characteristics of flexoelectric nanoplates are explored.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call