Abstract

In this work, we present two solutions of Einstein's field equations for compact stellar objects such as quark or neutron stars. Due to their unique stellar properties, these compact objects pose as excellent laboratories to study matter in the most extreme conditions. In part one of this paper, we solve Einstein's field equations modified for a finite value for the cosmological constant for spherically symmetric mass distributions. This solution has been presented in the literature before, but with inconsistent results. In part two, we examine the structure of deformed (non-spherical) compact objects. The stellar structure equations are derived and solved for in the limiting case of isotropic pressure and energy-density. We calculate stellar properties such as masses and radii along with pressure and density profiles for these deformed objects and investigate changes from the standard spherical models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.