Abstract

We study static solutions of a D-dimensional modified nonlinear Schrödinger equation (MNLSE) which was shown to describe, in two dimensions, the self-trapped (spontaneously localized) electron states in a discrete isotropic electron–phonon lattice [1, 2]. We show that this MNLSE, unlike the conventional nonlinear Schrödinger equation, possesses static localized solutions at any dimensionality when the effective nonlinearity parameter is larger than a certain critical value which depends on the dimensionality of the system under study. We investigate various properties of the equation analytically, using scaling transformations, within the variational scheme and numerically, and show that the results of these studies agree qualitatively and quantitatively. In particular, we prove that, for various values of D, when the coupling constant is larger than a certain critical value (which depends on D), this equation has two solutions, a stable (metastable) and an unstable one. We show that the solutions can be well approximated by a Gaussian ansatz and we also show that, in two dimensions, the equation possesses solutions with a nonzero angular momentum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.