Abstract

The static softening behavior of aluminum alloy A6082 was investigated by interrupted hot tests conducted on Gleeble-1500 simulator at deformation temperatures from 573 to 773 K and strain rates from 0.1 to 10 s−1, with a pre-strain from 0.3 to 0.7 and variable inter-pass delay times. The offset method was applied to convert the changes in flow stress between two passes to static softening fraction. The microstructural changes were characterized by the quantitative metallography of quenched specimens. The results showed both static softening and static recrystallization curves exhibited a simple sigmoidal shape; the static softening is related to the static recrystallization in a nonlinear manner with 50% static recrystallized volume fraction corresponding to 80% static softening fraction; an increase in temperature, strain rate or pre-strain yields a decrease in the time for 50% static recrysallized volume fraction, on which the temperature has the most remarkable influence; Si and Mn additions accelerate the process of static recrystallization. Finally, the equations of static recrystallization kinetics of this alloy were developed with a good agreement between the predicted and experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call