Abstract
Off-line hand written signature verification performs at the global level of image. It processes the gray level information in the image using statistical texture features. The textures and co-occurrence matrix are analyzed for features extraction. A first order histogram is also processed to reduce different writing ink pens used by signers. Samples of signature are trained with SVM model where random and skilled forgeries have been used for testing. Experimental results are performed on two databases: MCYT-75 and GPDS Synthetic Signature Corpus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Multimedia Data Engineering and Management
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.