Abstract

This paper presents a method of static security risk assessment for wind-integrated power system with the consideration of network configuration uncertainties and correlated parameters. A probabilistic load flow (PLF) model is firstly constructed for grid-connected induction wind power system. Modeling correlated parameters and network configuration uncertainties is then taken with Cholesky decomposition, Nataf transformation, compensation method and total probability theorem. Finally, the transmission line overload risk index and the over-limit voltage index of static security are quantified, which can be used as an indicator for power system security. The proposed method is tested on the modified IEEE 30-bus system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call