Abstract

The canines of saber-toothed cats are a classic example of an extreme morphology, yet important questions pertaining to their evolution remain unanswered. Recent analyses suggest these structures functioned as tools of intrasexual combat where trait size acts as both a weapon of battle and signal of competitive ability. However, classic skeletal reconstructions suggest saber-tooth canines evolved as specialized hunting tools. Either scenario could have led to the evolution of extreme canine size and distinguishing between these hypotheses is therefore difficult. This is made more challenging by the fact that natural observation of saber-toothed cats is impossible, and biologists must rely on measures of static morphology to study the patterns of selection that favored extreme canine size. Here I analyze the static intraspecific scaling relationship between canine size and body size in the saber-toothed cat, Smilodon fatalis, to determine whether or not extreme canine size functioned as a sexually selected signal. I review the literature surrounding the evolution of sexually selected signals and the methods recently established by O'Brien etal. (2018), show how static scaling relationships can be useful, reliable tools for inferring patterns of selection, especially in fossil organisms, and provide evidence that extreme canine size in saber-toothed cats was not the product of selection for effective sexual signals, but instead evolved as either a pure intrasexually selected weapon or a hunting tool.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call