Abstract
At present, puncture resistance and rheological performance of shear thickening fluid (STF) is an essential design requirement for a soft armour material (target sample). The target sample is prepared with a dip and dry process of STF impregnated woven polypropylene (PP) fabric. These samples were tested and compared with neat PP fabric. The penetration depth of target samples is highly sensitive to the coefficient of friction between the indenter’s nose shape geometry and the target sample. The STF is prepared by mechanical dispersion of synthesized microsphere silica microparticles at a volume fraction of 57% in polyethylene glycol (400 g/mol). The rheological response indicates that the prepared concentration of silica microparticles in the STF suspension is observed to have a better shear thickening effect. The viscosity of suspension is highly sensitive to silica aspect ratio, volume fraction and particle size distribution in this work. Tensile tests along with puncture resistance with different indenter nose shapes geometry (hemispherical, elliptical, flat and conical) have been performed in the present study. Results indicate that the energy absorption is more with the hemispherical indenter and less with that of the conical indenter, which is attributed to the minimum surface area of contact as compared to all other indenters. A total of 16 number of fabricated target samples with various coating thicknesses of STF impregnated fabrics achieved the desired tensile strength, modulus and puncture resistance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.