Abstract

The multicast paradigm offers tremendous benefits in efficiency for transmitting data across optical networks, allowing a single client to send information to an entire set of endpoints. A multicast request is most efficiently provisioned through the creation of a tree, with the endpoints, or resources, occasionally serving as branching points. This practice can lead to the source of the request becoming disconnected from the associated resources should one of those branching resources fail. In cases where a large amount of data are currently in transmission, the ramifications of this failure can be severe. We propose an optimal solution through integer linear programming for the static protected multicast routing and wavelength assignment problem, where an entire set of requests is provisioned with built-in redundancy against single resource node failure. We compare the optimal performance against several heuristics and find that protection against this type of failure can be provided with the trade-off of increased wavelength consumption, compared to less-protected solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.