Abstract

We relate the static charging of organic field effect transistor (OFET) gate dielectric polymers, the resulting change in threshold voltage shift, and the modulation of thermoelectric properties of the transistor semiconductor. We utilize a bottom gate OFET structure with cross-linkable polystyrene and plain polystyrene (XLPS/PS) bilayer dielectrics and dinaphthothienothiophene (DNTT) organic molecular semiconductor with tetrafluorotetracyanoquinodimethane (F4TCNQ) doping layer. The conductivity and Seebeck coefficient are measured before and after charging. We find that the conductivity increases significantly, while the Seebeck coefficient decreases correspondingly in a trend of S ∝ ln(σ) after the dielectrics were negatively charged, resulting in an average of 5-fold increase in power factor at the maximum charging level. Additionally, temperature-dependent conductivity measurements show that the activation energy decreases with the increasing conductivity. We calculate the Seebeck coefficient based on the activation energy and find the result is consistent with the Mott mobility edge model. This work confirms the charging mechanism in our previous published work, including the location of static charges in the bulk of the dielectric, and demonstrates modulation and enhancement of the thermoelectric properties of organic thermoelectric materials by adjacent chargeable dielectrics without changing the molecular microstructure or applying external gate voltage during operation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call