Abstract

We study static annihilation on complex networks, in which pairs of connected particles annihilate at a constant rate during time. Through a mean-field formalism, we compute the temporal evolution of the distribution of surviving sites with an arbitrary number of connections. This general formalism, which is exact for disordered networks, is applied to Kronecker, Erdös-Rényi (i.e., Poisson), and scale-free networks. We compare our theoretical results with extensive numerical simulations obtaining excellent agreement. Although the mean-field approach applies in an exact way neither to ordered lattices nor to small-world networks, it qualitatively describes the annihilation dynamics in such structures. Our results indicate that the higher the connectivity of a given network element, the faster it annihilates. This fact has dramatic consequences in scale-free networks, for which, once the "hubs" have been annihilated, the network disintegrates and only isolated sites are left.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.