Abstract

The static magnetic solutions in magnetic composites with arbitrary susceptibility inhomogeneity and anisotropy are accurately computed using an efficient numerical algorithm based on a proposed Fourier spectral iterative perturbation method for 3-dimensional systems. An advantage of this method is that the interphase boundary conditions are automatically considered without explicitly tracking interphase interfaces in the composites. This method can be conveniently implemented in phase-field modeling of microstructure evolution in systems with inhomogeneous susceptibility as well as inhomogeneous spontaneous magnetization distributions. Based on the proposed method, the effects of microstructures including the susceptibility mismatch between the inclusions and matrix, inclusions volume fraction, and inclusions arrangement on the effective susceptibility and local static magnetic field distribution of the composite are investigated. It is found that the interactions among the inclusions embedded in the matrix play critical roles in determining the composite properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.