Abstract

Cisplatin is a chemotherapy drug widely used in cancer treatment. Alongside its clinical benefits, however, it may inflict intolerable toxicity and other adverse effects on healthy tissues. Due to the limitation of administering a high dose of cisplatin as well as cancer drug resistance, it is necessary to utilize new methods optimizing treatment modalities through both higher therapeutic efficacy and reduced administered doses of radiation and drugs. In this study, sensitive (A2780) and resistant (A2780CP) ovarian carcinoma cells underwent treatment with cisplatin + static magnetic field (SMF). First, the levels of genotoxicity after treatment were evaluated by Comet assay. Then, cell cycle analysis and apoptosis assay were conducted by a flow cytometer. Lastly, the expression levels of genes involved in apoptosis and cellular drug uptake were investigated by PCR. After treating different groups of cells for 24, 48, and 96 h, the co-treatment of SMF and cisplatin as a combination managed to increase the amount of DNA damage in both sensitive and resistant cell lines. A considerable increase in mortality of cells was also observed mostly in the form of apoptosis, which was caused by inhibition of the cell cycle. The combination also increased the expression levels of apoptotic genes, namely P53 and P21; however, it did not have much effect on the expression levels of BCL2. Besides, the levels of CTR1 gene expression increased significantly in the groups receiving the aforementioned combination. Our study suggests that the combination of cisplatin + SMF might have clinical potential which needs further investigations through future studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call