Abstract
This study aims to improve the freezing-thawing process of human sperm using a static magnetic field. The study included 25 normozoospermic human samples. After an initial evaluation of sperm parameters, samples were prepared by the direct swim-up method. Before freezing, sperm motility, viability, morphology, acrosome reaction and DNA fragmentation rate were assessed. The samples were divided into 4 groups: 0, 1, 5 and 10 mT, and each group was frozen by the rapid freezing method. After thawing, the parameters were re-evaluated and compared between groups. Sperm motility decreased significantly during cryopreservation in all groups. The static magnetic field did not protect against decreased progressive motility after freezing, but the total sperm motility was significantly higher in the 10 mT group compared to the other groups. Sperm viability was higher in the 10 mT group than in the other groups. There was no significant difference in the rate of normal sperm morphology after freezing. The rate of spermatozoa with intact acrosome decreased after freeze-thawing, and the static magnetic field did not protect against the acrosome reaction. The rate of DNA integrity was significantly higher in the 10 mT group compared to the other groups. A static magnetic field with an intensity of 10 mT improved sperm viability and DNA integrity compared to other groups. However, it did not provide significant protection against decreased sperm motility or acrosome reaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.