Abstract
Recombinant gelatins are currently evaluated as new excipients for pharmaceutical formulations. They can differ from nonrecombinant gelatins because of intentional alteration of the amino acid sequence and specific properties of the expression systems used. This may affect their solution behavior. In the present work, aqueous solutions of a histidine-containing recombinant gelatin (RG-15-His) were analyzed. Dynamic light scattering (DLS) and loss of absorbance at 200nm upon centrifugation indicated the formation of aggregates within 1day upon sample preparation. Static light scattering (SLS) and small-angle neutron scattering (SANS) experiments showed that the aggregate's size was ≥300nm, and that aggregates are composed of thin, rigid rods of 37±5nm in length. The observed aggregation was not detectable by circular dichroism (CD), Fourier transform infrared spectroscopy (FTIR), and cryo transmission electron microscopy (cryo-TEM). SANS experiments, which are not frequently used in the pharmaceutical field, provided additional morphological information about the recombinant gelatin in solution. The results show that combining SLS and SANS is a broadly applicable, complementary approach for detecting aggregation of proteins and other biomolecules and for obtaining structural information about the aggregates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.