Abstract

The nonlinear response is investigated for a space-fractional quantum mechanical system subject to a static electric field. Expressions for the polarizability and hyperpolarizability are derived from the fractional Schr\"{o}dinger equation in the particle-centric view for a three-level model constrained by the generalized Thomas-Rieke-Kuhn sum rule matrix elements. These expressions resemble those for a semi-relativistic system, where the reduction of the maximum linear and nonlinear static response is attributed to the functional dependence of the canonical position and momentum commutator. As examples, a clipped quantum harmonic oscillator potential and slant well potential are studied. The linear and first nonlinear response to the perturbing field are shown to decrease as the space fractionality is moved further below unity, which is caused by a suppression of the dipole transition moments. These results illustrate the importance of dimensionality and the order of the kinetic momentum operator which affect the strength of a system's optical response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.