Abstract

The grain growth behavior of the microduplex titanium, 6% aluminum, 4% vanadium alloy is addressed. Although there has been considerable work done on second phase particle coarsening, there is limited research on coarsening in a two-phase material with nearly equal phase ratios. In this study, coarsening parameters were determined for the temperature range of 850–925°C, where α and β phase ratios are approximately 50 percent. Experimentally determined grain growth data for the Ti alloy are found to follow classical particle-stabilized grain growth kinetics with a temperature dependent coefficient and a constant exponent. On the basis of these observations a grain boundary pipe diffusion model is proposed which has the desired features of incorporating both the faster kinetics of the grain boundary diffusion and the unidirectional exponent q=5, which is often observed in microduplex alloys. The model appears to resolve a previously reported dilemma that the time exponent suggests pipe diffusion but the kinetics associated with the triple boundary is too slow. The concept proposed should have applicability to other two-phase alloys containing approximately equal volume fractions of each phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.