Abstract

By appealing to the Poincare-Hopf Theorem on topological invariants, we introduce a global classification scheme for homogeneous, convex bodies based on the number and type of their equilibria. We show that beyond trivially empty classes all other classes are non-empty in the case of three-dimensional bodies; in particular we prove the existence of a body with just one stable and one unstable equilibrium. In the case of two-dimensional bodies the situation is radically different: the class with one stable and one unstable equilibrium is empty ( Domokos, Papadopoulos, Ruina, J. Elasticity 36 [1994], 59-66 ). We also show that the latter result is equivalent to the classical Four-Vertex Theorem in differential geometry. We illustrate the introduced equivalence classes by various types of dice and statistical experimental results concerning pebbles on the seacoast.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.