Abstract

Two natural CO2-rich cordierite samples (1.00 wt% CO2, 0.38 wt% H2O, and 1.65 wt% CO2, 0.15 wt% H2O, respectively) were investigated by means of Raman spectroscopy and single-crystal X-ray diffraction at ambient and high pressures. The effect of heavy-ion irradiation (Au 2.2 GeV, fluence of 1 × 1012 ions cm−2) on the crystal structure was investigated to characterize the structural alterations complementary to results reported on hydrous cordierite. The linear CO2 molecules sustained irradiation-induced breakdown with small CO2-to-CO conversion rates in contrast to the distinct loss of channel H2O. The maximum CO2 depletion rate corresponds to ~12 ± 5 % (i.e. ~0.87 and ~1.49 wt% CO2 according to the two samples, respectively). The elastic properties of CO2-rich cordierite reveal stiffening due to the CO2 molecules (non-irradiated: isothermal bulk modulus K 0 = 120.3 ± 3.7 GPa, irradiated: K 0 = 109.7 ± 3.7 GPa), but show the equivalent effect of hydrous cordierite to get softer when irradiated. The degree of anisotropy of axial compressibilities and the anomalous elastic softening at increasing pressure agrees with those reported for hydrous cordierite. Nevertheless, the experimental high-pressure measurements using ethanol–methanol reveal a small hysteresis between compression and decompression, together with the noticeable effect of pressure-induced over-hydration at pressures between 4 and 5 GPa.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call