Abstract
Textbooks often present the phenomenon of screening within the Thomas–Fermi model for three-dimensional free electron gases, but obtaining the dielectric response function and screening potential for dielectric systems of reduced dimensionality is also of pedagogical interest. In this work, we introduce a simple approach to investigate static screening in dielectric systems in the presence of an impurity charge for different dimensionalities. This approach is applicable to semiconductors and insulators alike. We demonstrate that, in 3D systems, the macroscopic dielectric function in reciprocal space is a constant, while in 2D and 1D systems, it strongly depends on the momentum transferred to the electrons in the dielectric. Through the proposed dielectric screening model, one can also determine binding energies in a hydrogenic model that can be used to describe excitations in real semiconductor systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.