Abstract
We study infinitesimal deformations of a porous linear elastic body saturated with an inviscid fluid and subjected to conservative surface tractions. The gradient of the mass density of the solid phase is also taken as an independent kinematic variable and the corresponding higher-order stresses are considered. Balance laws and constitutive relations for finite deformations are reduced to those for infinitesimal deformations, and expressions for partial surface tractions acting on the solid and the fluid phases are derived. A boundary-value problem for a long hollow porous solid cylinder filled with an ideal fluid is solved, and the stability of the stressed reference configuration with respect to variations in the values of the coefficient coupling deformations of the two phases is investigated. An example of the problem studied is a cylindrical cavity leached out in salt formations for storing hydrocarbons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.