Abstract

BackgroundRubidium-82 positron emission tomography (82Rb PET) MPI is considered a noninvasive reference standard for the assessment of myocardial perfusion in coronary artery disease (CAD) patients. Our main goal was to compare the diagnostic performance of static rest/ vasodilator stress CT myocardial perfusion imaging (CT-MPI) to stress/ rest 82Rb PET-MPI for the identification of myocardial ischemia.MethodsForty-four patients with suspected or diagnosed CAD underwent both static CT-MPI and 82Rb PET-MPI at rest and during pharmacological stress. The extent and severity of perfusion defects on PET-MPI were assessed to obtain summed stress score, summed rest score, and summed difference score. The extent and severity of perfusion defects on CT-MPI was visually assessed using the same grading scale. CT-MPI was compared with PET-MPI as the gold standard on a per-territory and a per-patient basis.ResultsOn a per-patient basis, there was moderate agreement between CT-MPI and PET-MPI with a weighted 0.49 for detection of stress induced perfusion abnormalities. Using PET-MPI as a reference, static CT-MPI had 89% sensitivity (SS), 58% specificity (SP), 71% accuracy (AC), 88% negative predictive value (NPV), and 59% positive predictive value (PPV) to diagnose stress-rest perfusion deficits on a per-patient basis. On a per-territory analysis, CT-MPI had 73% SS, 65% SP, 67% AC, 90.8% NPV, and 34% PPV to diagnose perfusion deficits.ConclusionsCT-MPI has high sensitivity and good overall accuracy for the diagnosis of functionally significant CAD using 82Rb PET-MPI as the reference standard. CT-MPI may play an important role in assessing the functional significance of CAD especially in combination with CCTA.

Highlights

  • Cardiac computed tomography (CT) angiography (CCTA) is a noninvasive diagnostic method with high sensitivity and very high negative predictive value for the detection of obstructive coronary artery disease (CAD) in patients with chest pain (Budoff et al 2008; Miller et al 2008; Meijboom et al 2008; Litt et al 2012)

  • CCTA can provide anatomical information regarding the presence of epicardial coronary artery stenosis, the hemodynamic significance of coronary stenosis usually requires assessment by catheter-based fractional flow reserve (FFR) (Meijboom et al 2008; Pijls et al 1996), or noninvasive methods such as single photon emission tomography/myocardial perfusion imaging (SPECT-Myocardial perfusion imaging (MPI)) (Gaemperli et al 2008), positron emission tomography (PET) (Carli et al 2007), cardiac magnetic resonance imaging (CMR) (Bettencourt et al 2013), stress echocardiography (JiménezNavarro et al 2001) and ­Fraction flow reserve derived from computed tomography (FFRCT) (FFR determined using CCTA images) (Pontone et al 2019a)

  • Our study shows a moderate agreement between static CT myocardial perfusion imaging (CT-MPI) and 82Rb PET-MPI and demonstrates good diagnostic performance of CT-MPI on qualitative and quantitative analyses at a per-person (89% SS, 58% SP, 71% accuracy AC) and a per-territory level (73% SS, 65% SP, 67% AC)

Read more

Summary

Introduction

Cardiac computed tomography (CT) angiography (CCTA) is a noninvasive diagnostic method with high sensitivity and very high negative predictive value for the detection of obstructive coronary artery disease (CAD) in patients with chest pain (Budoff et al 2008; Miller et al 2008; Meijboom et al 2008; Litt et al 2012). Both morphological data and functional significance of coronary stenosis are important for management and to impact clinical outcomes for symptomatic CAD patients considered for revascularization (Bruyne et al 2012). Our main goal was to compare the diagnostic performance of static rest/ vasodilator stress CT myocardial perfusion imaging (CT-MPI) to stress/ rest 82Rb PET-MPI for the identification of myocardial ischemia

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.